Nitrate removal in stream ecosystems measured by $^{15}$N addition experiments: Denitrification

Patrick J. Mulholland, a,b,* Robert O. Hall, Jr., c Daniel J. Sobota, d,l Walter K. Dodds, g Stuart E. G. Findlay, f Nancy B. Grimm, g Stephen K. Hamilton, b William H. McDowell, i Jonathan M. O’Brien, h Jennifer L. Tank, i Linda R. Ashkenas, d Lee W. Cooper, b,2 Clifford N. Dahm, k Stanley V. Gregory, d Sherri L. Johnson, l Judy L. Meyer, m Bruce J. Peterson, n Geoffrey C. Poole, o, m H. Maurice Valett, p Jackson R. Webster, p Clay P. Arango, j,7 Jake J. Beaulieu, i,3 Melody J. Bernot, a Amy J. Burgin, h,4 Chelsea L. Crenshaw, k,5 Ashley M. Helton, m Laura T. Johnson, j B. R. Niederlehner, p Jody D. Potter, l Richard W. Sheibley, g,6 and Suzanne M. Thomas n

a Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
b Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee
c Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming
d Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon
e Division of Biology, Kansas State University, Manhattan, Kansas
f Cary Institute of Ecosystem Studies, Millbrook, New York
g School of Life Sciences, Arizona State University, Tempe, Arizona
h Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan
i Department of Natural Resources, University of New Hampshire, Durham, New Hampshire
j Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
k Department of Biology, University of New Mexico, Albuquerque, New Mexico
l Pacific NW Research Station, U.S. Forest Service, Corvallis, Oregon
m Odum School of Ecology, University of Georgia, Athens, Georgia
n Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts
o Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana
p Department of Biological Sciences, Virginia Polytechnic and State University, Blacksburg, Virginia
q Department of Biology, Ball State University, Muncie, Indiana

Abstract

We measured denitrification rates using a field $^{15}$N–NO$_3^-$ tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban–urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification ($S_{W,den}$) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N$_2$ production rates far exceeded N$_2$O production rates in all streams. The fraction of total NO$_3^-$ removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NH$_4^+$ concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling $S_{W,den}$ were specific discharge (discharge / width) and NO$_3^-$ concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate ($U_{den}$) and NO$_3^-$ concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis–Menten equation. Although $U_{den}$ increased with increasing NO$_3^-$ concentration, the efficiency of NO$_3^-$ removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO$_3^-$ load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO$_3^-$ concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO$_3^-$ concentration.

* Corresponding author: mulhollandpj@ornl.gov

Present addresses:
1 School of Earth and Environmental Sciences, Washington State University, Vancouver Campus, Vancouver, Washington
2 Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland
3 U.S. Environmental Protection Agency, Cincinnati, Ohio
4 Cary Institute of Ecosystem Studies, Millbrook, New York
5 Department of Biology, Utah State University, Logan, Utah
6 USGS Washington Water Science Center, Tacoma, Washington
7 Department of Geography, Central Washington University, Ellensburg, Washington
Humans have doubled inputs of fixed nitrogen (N) to the biosphere in recent decades (Vitousek et al. 1997; Galloway et al. 2004), causing increased hydrologic export of N from landscapes and consequent large increases in riverine inputs of N to estuaries and coastal oceans, primarily as nitrate–nitrogen (NO$_3^-$–N; Howarth et al. 1996; Jordan and Weller 1996). N loading to streams and rivers has accelerated rates of eutrophication and is implicated in development of extensive areas of anoxia and harmful algal blooms in a number of coastal ecosystems (Turner and Rabalais 1994; Glasgow and Burkholder 2000).

Regional budgets have shown that only about 10–25% of N added to land by humans is exported to the ocean (Howarth et al. 1996; Boyer et al. 2002; Schaefer and Alber 2007), indicating that substantial N sinks exist between land where N is applied and oceans receiving N loads. Streams and rivers may be important sinks for N owing to their high rates of biological activity and streamed sediment environments that favor microbial denitrification. In a study of the Mississippi River drainage basin, Alexander et al. (2000) showed that river networks were important sinks for dissolved N originating from terrestrial landscapes and consequent large increases in riverine inputs of N to estuaries and coastal oceans, primarily as nitrate–nitrogen (NO$_3^-$–N; Howarth et al. 1996; Jordan and Weller 1996). N loading to streams and rivers has accelerated rates of eutrophication and is implicated in development of extensive areas of anoxia and harmful algal blooms in a number of coastal ecosystems (Turner and Rabalais 1994; Glasgow and Burkholder 2000).

In a study of the Mississippi River drainage basin, Alexander et al. (2000) showed that river networks were important sinks for dissolved N originating from terrestrial runoF. Peterson et al. (2001) developed a stream N-uptake model based on results from a cross-site $^{15}$N addition study, and showed that biotic uptake could reduce inorganic N concentrations by about two-thirds over a 1-km stream reach.

A number of processes remove inorganic N from water, including assimilation by plants and microbes, sorption to sediments, deposition of particulate organic N, and denitrification. However, it is primarily denitrification that results in permanent loss while the other processes represent internal transformation or relocation. Rates of denitrification in streams and rivers have usually been estimated by mass-balance approaches or measured using the acetylene-block technique on sediment cores or slurries returned to the laboratory or in cores or chambers incubated in situ. Studies using the acetylene-block technique have generally shown that denitrification rates are highly variable in space and time, and are related primarily to redox status, NO$_3^-$ concentration, and the availability of labile organic carbon (Duff et al. 1996; Holmes et al. 1996; Kemp and Dodds 2002). However, the acetylene-block technique is difficult to extrapolate to in situ rates because of handling of sediments if performed in the laboratory, modification of hydraulic conditions if conducted in field chambers, and inhibition of nitrification (Bernot et al. 2003). Thus, this technique may not provide accurate measures of denitrification rates for entire stream reaches, and may generate considerable uncertainty in extrapolating point estimates to larger scales.

Recently, several new approaches have been developed to measure denitrification at the scale of stream reaches. Mulholland et al. (2004) and Böhlke et al. (2004) describe a field $^{15}$N-NO$_3^-$ tracer-addition approach to quantify denitrification and total nitrate uptake rates. Laursen and Seitzinger (2002) and McCutchan et al. (2003) developed an approach using changes in N$_2$ concentrations over time or distance to estimate reach-scale denitrification rates. These reach-scale approaches provide the information needed to assess denitrification at the scale of entire river networks as demonstrated by Mulholland et al. (2008). An important issue for the response of streams to long-term increases in nitrogen loading is how denitrification rates will respond. It has been hypothesized that denitrification rates will saturate, but not as quickly as total uptake rates, because nitrate is being used in a dissimilatory process (electron acceptor for the oxidation of organic carbon) whereas assimilatory uptake will slow once it satisfies demands for growth (Bernot and Dodds 2005).

Here we report results of a large, cross-site study of denitrification using the reach-scale field $^{15}$N–NO$_3^-$ tracer-addition approach (second Lotic Intersite Nitrogen eXperiment [LINX II]). Experiments consisted of $^{15}$N tracer additions to headwater streams across multiple biomes and land uses in the United States and Puerto Rico to provide in situ, reach-scale measurements of total NO$_3^-$ uptake and denitrification. In a previous paper, we showed the strong effect of stream NO$_3^-$ concentration on total uptake and denitrification rates across all biomes and land uses, and the implications of this relationship for NO$_3^-$ removal in river networks (Mulholland et al. 2008). In a companion paper (Hall et al. 2009), we present a detailed analysis of total NO$_3^-$ uptake and assimilatory uptake processes from the LINX II study, showing that NO$_3^-$ concentration and gross primary production (GPP) rates are important controls. Here, we focus on denitrification as a mechanism for NO$_3^-$ removal from stream water, and use multivariate techniques to show how hydrologic, geomorphic, and biologic factors interact to regulate denitrification rate. Our study addressed the following questions: (1) What are the most important proximate (direct) controls on denitrification rate and how do they interact to regulate denitrification uptake length and rate in streams across several biomes? (2) How does land use indirectly regulate denitrification through its effect on these proximate controls? (3) What is the best predictive model for denitrification uptake length and rate across a broad range of streams, including those with substantial anthropogenic influence? (4) Does denitrification rate become saturated with increasing NO$_3^-$ concentration?

**Methods**

**Study sites**—We selected streams representing a wide range of biomes and land-use types. In each of eight regions (Fig. 1), we chose three headwater streams (generally first- or second-order, stream discharge <300 L s$^{-1}$) in each of three land-use categories (reference [i.e., the extant vegetation type for that biome], agricultural, suburban–urban), for a total of 72 streams (see Web Appendix: www.aslo.org/lo/toc/vol_54/issue_3/0666a.pdf). Streams were assigned to land-use categories based on visual observation of the dominant land use adjacent to the study reach. Reference streams were bordered by native vegetation according to biome and included forests, grassland, and desert shrub-land vegetation. Agricultural streams included a wide variety of cultivated lands, open-range grazing, and
pastures. Suburban–urban streams included those bordered by housing developments, golf courses, and commercial areas, including a few with cement-lined channels. Selection of agricultural and suburban–urban streams was not necessarily intended to represent the dominant type of agricultural or suburban–urban environment but rather to provide a range of environments typical of each region. Many of the catchments drained by these streams had mixed land uses.

We determined land cover in the catchments of each stream using the United States Geological Survey (USGS) National Elevation Data Set (http://seamless.usgs.gov) and 2001 USGS National Land Cover Datasets (http://seamless.usgs.gov). For the Puerto Rico streams we used the 1991–1992 Landsat TM imagery as derived by Helmer et al. (2002). This a posteriori analysis of land cover at the catchment scale showed that reference streams drained catchments with 85\% native vegetation (except for two streams with 50\% and 65\% native vegetation), whereas agricultural and suburban–urban streams drained catchments ranging from <1\% to 100\% agricultural and suburban–urban land-cover types.

\[ d_{15N} = \left( \frac{R_{SA}}{R_{ST}} - 1 \right) \times 1000, \] 

and \( R \) is the \( 15N:14N \) ratio.

\[^{15}N\] additions, sampling, and analysis—Experimental methods are outlined in a prior \(^{15}N\)-\(^{14}N\) addition study in Walker Branch, Tennessee (Mulholland et al. 2004) and in the online appendices to Mulholland et al. (2008) and described briefly here. We continuously added a K\(^{15}NO_3\) (\( >98\% 15N \)) and a conservative tracer (NaCl or NaBr) solution to each stream over a 24-h period using a peristaltic or fluid-metering pump. Isotope was added at rates designed to increase the \(^{15}N:^{14}N\) ratio of streamwater \( NO_3^- \sim 20,000\% \), which resulted in a relatively small (\( \sim 7.5\% \)) increase in the concentration of \( NO_3^- \) in stream water. We began isotope additions at \( \sim 13:00 \) h local time in each stream, completed additions at \( \sim 13:00 \) h the following day, and injected propane or SF\(_6\) to measure air–water gas exchange rates within one day of the isotope-addition experiment.

Stream reaches of 105–1830 m (reach length was varied according to stream discharge and background \( NO_3^- \) concentration) were sampled at 6–10 locations downstream from the isotope-addition point. We measured \(^{15}N\) flux in streamwater \( NO_3^- \), \( N_2 \), and \( N_2O \) downstream from the addition point after downstream concentrations reached steady state. Samples for \(^{15}N\) were collected once several hours prior to (to estimate natural-abundance \(^{15}N\) levels) and two times after the isotope addition commenced: \( \sim 12 \) h (near midnight) and \( \sim 23 \) h (near noon). \(^{15}N\)-\( NO_3^- \) was measured in filtered samples using a sequential reduction and diffusion method (Sigman et al. 1997). Samples were analyzed for \(^{15}N\) on either a Finnigan Delta-S or a Europa 20–20 mass spectrometer in the Mass Spectrometer Laboratory of the Marine Biological Laboratory in Woods Hole, Massachusetts, a Europa Integra mass spectrometer in the Stable Isotope Laboratory of the University of California, Davis, or a ThermoFinnigan DeltaPlus mass spectrometer in the Stable Isotope Laboratory at Kansas State University.

Water samples for \(^{15}N\)-\( N_2 \) and \(^{15}N\)-\( N_2O \) were collected at each sampling location, equilibrated with He in 60- or 140-mL syringes, and injected into evacuated vials using underwater transfers of sample and gas to reduce the potential for air contamination (Hamilton and Ostrom 2007). Gas samples were analyzed for \(^{15}N\) by mass spectrometry either using a Europa Hydra Model 20–20 mass spectrometer, a ThermoFinnigan DeltaPlus mass spectrometer, or a VG Instruments Prism Series II mass spectrometer (Biogeochemistry Laboratory, Department of Zoology, Michigan State University). \(^{15}N\) content of all samples was reported in \( \delta^{15N} \) notation where \( \delta^{15N} = ([R_{SA}/R_{ST}] - 1) \times 1000 \), and \( R \) is the \( 15N:14N \) ratio.

![Fig. 1. Regional sites of LINX II study streams and the biomes represented. Abbreviations are Oregon (OR), Wyoming (WY), Michigan (MI), Massachusetts (MA), North Carolina (NC), Puerto Rico (PR), Kansas (KS), and Southwest (SW).](image-url)
Denitrification rates in streams

Results are expressed as parts per thousand (‰) deviation of the sample (SA) from the standard (ST), N_2 in the atmosphere (\(\delta^{15}N = 0\)‰). All \(\delta^{15}N\) values were converted to mole fractions (MF) of \(^{15}N\) [\(^{15}N/\left(^{14}N + ^{15}N\right)\)], and tracer \(^{15}N\) fluxes (F) were calculated for each sample by multiplying the \(^{15}N\) MF, corrected for natural abundances of \(^{15}N\) by subtracting the average ambient \(^{15}N\) MF for samples collected prior to the \(^{15}N\) addition, by the concentrations of \(NO_\gamma\), \(N_2\), or \(N_2O\) in stream water (C; concentrations of \(NO_\gamma\) and \(N_2O\) were measured, whereas \(N_2\) was taken as the concentration in equilibrium with air at the ambient stream temperature), and stream discharge (Q), derived from the measured conservative solute tracer concentrations (F = MF \(\times C \times Q\)).

\[d^{15}NO_\gamma / dx = -k_{tot} \times ^{15}NO_\gamma \]  \hspace{1cm} (1)

\[d^{15}NO_\gamma / dx = -(k_{den} + k_U)\times^{15}NO_\gamma \]  \hspace{1cm} (2)

\[d^{15}N_{GAS} / dx = k_{den}^{15}NO_\gamma - k_{U}^{15}N_{GAS} \]  \hspace{1cm} (3)

Denitrification rates \((k_{den})\) were measured by model fitting only when there was significant tracer \(^{15}N\) in \(N_2\) or \(N_2O\) (defined as \(\delta^{15}N\) values greater than the upper 97.5% confidence interval of background values measured prior to the isotope addition) at three or more stations along the stream reach. We then calculated the approximate 95% confidence interval for each \(k_{den}\) value using maximum likelihood estimates (MLE) assuming normally distributed errors (Hilborn and Mangel 1997) to assess whether \(k_{den}\) values were significantly >0 (i.e., 95% confidence interval of \(k_{den}\) did not include 0). We also applied MLE to \(^{15}N\)-flux data from streams that did not meet the model-fitting criterion above (three stations with significant tracer \(^{15}N\) in \(N_2\) or \(N_2O\)) to determine if \(k_{den}\) was nonetheless sufficiently constrained to assign a nonzero value. Total \(k_{den}\) was then calculated as the sum of the \(k_{den}\) values for \(N_2\) and \(N_2O\). Uptake length of \(NO_\gamma\) from denitrification (\(S_{Wden}\) in m) is simply the inverse of total \(k_{den}\).

Calculation of nutrient spiraling metrics—We calculated several additional denitrification rate metrics from \(k_{den}\) (Stream Solute Workshop 1990). Denitrification rate per unit time \((k_{denT}, \text{in d}^{-1})\) was calculated as

\[k_{denT} = k_{den} \times v \times 864 \]  \hspace{1cm} (4)

where \(v\) is the average water velocity (cm s\(^{-1}\)) and 864 is a units-conversion factor. Denitrification uptake velocity \((u_{jden} \text{ in cm s}^{-1})\) was calculated as

\[v_{jden} = \left(\frac{Q}{w}\right) \times k_{den} \times 0.1 \]  \hspace{1cm} (5)

where \(Q\) = discharge (L s\(^{-1}\)), \(w\) = average stream wetted width (m), and 0.1 is a units-conversion factor. Areal denitrification rate \((U_{den}, \text{in mg m}^{-2} h^{-1})\) was calculated as

\[U_{den} = \left(u_{jden} \times C\right) \times 3.6 \]  \hspace{1cm} (6)

where \(C\) is the ambient \(NO_\gamma\) concentration (\(\mu g\) N L\(^{-1}\)) and 3.6 is a conversion factor.

The denitrification fraction (fraction of total \(NO_\gamma\) uptake due to denitrification) was calculated as \(k_{den}/k_{tot}\).

Measurements of other stream characteristics—Physical, chemical, and biological variables were measured in each stream within 3 d of the \(^{15}N\) experiment to determine potential controls and predictors of denitrification rates. Average stream width \((w)\) was calculated from measurements of wetted width at 5–10-m intervals along the experimental reach. Average discharge was measured by dilution of the conservative solute tracer. Average water velocity was measured by the time of travel of the rising limb of the conservative tracer profile and average depth was calculated as \(Q/(w \times v)\). An advection–dispersion model with transient storage (OTIS-P; Bencala and Walters 1983; Runkel 1998) was applied to the conservative tracer data to determine hydraulic characteristics related to transient storage zones.

We collected water samples for chemical analysis at the same time and locations along the stream reach as the \(^{15}N\) samples. Concentrations of \(NO_\gamma\) were measured either by ion chromatography or by azo dye colorimetry after Cu–Cd reduction, \(NH_4^+\) by phenate colorimetry or fluorometry, soluble reactive phosphorus (SRP) by ascorbic acid–molybdenum blue, and dissolved organic carbon by high-temperature combustion (Shimadzu TOC-V analyzer; American Public Health Association 1992).

Standing stocks of several benthic organic-matter components (coarse and fine benthic organic matter, epilithon, bryophytes, filamentous algae, vascular plants) were measured by collecting materials from a known area of the stream bottom at 5–10 locations within the study
reach. Dry mass (60°C) and ash-free dry mass (after combustion at 500°C) were determined on the material collected and extrapolated to the reach scale to estimate standing stocks.

Reach-scale rates of metabolism (GPP and ER) were measured using the diel dissolved-oxygen method (Odum 1956; Marzolf et al. 1994). Rates of air–water exchange of dissolved oxygen were calculated from the decline in dissolved propane or SF6 concentrations with distance (Marzolf et al. 1994) during gas injections conducted in conjunction with metabolism measurements.

**Statistical analysis**—To improve normality prior to parametric statistical analysis, all NO\textsubscript{3} uptake parameters and other variables were log\textsubscript{10}-transformed, except denitrification fraction and catchment land-use fractions which were arcsine-square-root–transformed. Effect of region and land-use category were determined from two-way analysis of variance (ANOVA) and Dunnett’s Multiple Comparison test with Bonferroni adjustment to determine significant differences among regions and land-use categories \((z = 0.05)\). Bivariate regressions were used to estimate relationships between the strongest individual predictors and denitrification rate. ANOVA and regression analysis were performed using SAS\textsuperscript{®}, version 9.1 for Windows (SAS Institute).

We used two multivariate approaches to examine controls on \(S\textsubscript{Wden}\) as described in Hall et al. (2009). The first was structural equation modeling (SEM) using observed variables (Shipley 2000; Grace 2006) to test a hypothesized pattern of causation with data based on a priori hypotheses as to the proximate controls of \(S\textsubscript{Wden}\). Using the package sem in R, we fit the expected covariance matrix based on the path model to the covariance matrix derived from the data by iteratively solving for a maximum likelihood solution (Fox 2006; R Development Core Team 2006). We used a chi-square–based goodness-of-fit test where \(p > 0.05\) shows that the model structure is consistent with the data. We report unstandardized coefficients, rather than standardized coefficients, which allows measuring the direct effect of a predictor (e.g., NO\textsubscript{3} concentration) on a response variable (Grace 2006). To estimate fraction of variation explained by the models, we calculated error variance for \(S\textsubscript{Wden}\) in a model with standardized coefficients.

For the second approach, we evaluated a set of multiple linear regression (MLR) models to identify (1) what other variables besides those in the SEM analysis may serve as useful predictors of \(S\textsubscript{Wden}\) and (2) how the predictive capability of correlative MLR models compares with structured causal-based models of \(S\textsubscript{Wden}\). The set of MLR models were selected using Akaike’s information criterion (AIC), which balances model predictive ability and parsimony (Akaike 1973). We applied a small sample size correction to AIC values (\(\text{AIC}_C\)) because of our relatively small sample size \((n = 44)\); excluding missing values in explanatory terms; Burnham and Anderson 2002). We used a stepwise procedure to select a set of MLR models that predicted \(S\textsubscript{Wden}\) with differences in \(\text{AIC}_C\) values \((\Delta) < 4.0\) (Keeton et al. 2007). Explanatory variables that were available for model selection are presented in Table 1. Additionally, we calculated model likelihood \((L)\), relative model likelihood \((w)\), and multiple \(R^2\) for each MLR model in candidate set (Burnham and Anderson 2002).

**Results**

We were able to calculate total NO\textsubscript{3} uptake rates per unit stream length \((k\textsubscript{den})\) for 69 of the 72 streams studied (measurable rate of decline of tracer \(^{15}\text{NO}_3\) with distance, see Hall et al. 2009), and were able to calculate total denitrification rates \((k\textsubscript{den})\) for 49 of these streams (i.e., streams that met model-fitting criteria and for which the 95% confidence interval did not encompass 0 based on MLE analysis; see Web Appendix). All subsequent analyses and discussion are based on the results from these 49 streams.

N\textsubscript{2} production rates far exceeded N\textsubscript{2}O production rates in all streams (results from two streams are shown in Fig. 2), with median N\textsubscript{2} production rate being 99.4% of the sum of N\textsubscript{2} and N\textsubscript{2}O production rate \((\text{range } = 94.3–99.9\%)\). Because N\textsubscript{2}O production was a small fraction of total denitrification rate, it will not be considered separately and our analyses hereafter are focused on total denitrification rate. Although insignificant as a component of denitrification, N\textsubscript{2}O emissions contribute to atmospheric pools of this greenhouse gas, and LIXN II data on in-stream production and emission rates of N\textsubscript{2}O from the study streams will be the subject of another paper (J. Beaulieu unpubl.).

There were no consistent diurnal effects on denitrification rates. We could measure denitrification rate for both night and day samplings for 27 streams (i.e., both day and night \(^{15}\text{N}_2\) data met the model-fitting criteria and MLE indicated that \(k\textsubscript{den}\) was significantly \(\geq 0\), see Methods). Only 5 of the 27 streams had significantly higher denitrification rates at night than during the day and 2 of 27 had significantly higher denitrification rates during the day than at night (significance defined as nonoverlapping 95% CI). Of the 12 streams with relatively high rates of GPP \((\geq 1\text{ g O}_2\text{ m}^{-2}\text{ d}^{-1})\), only two had significantly higher denitrification rates at night than during the day. For all subsequent analyses, we averaged day and night denitrification rates for these streams.

\(S\textsubscript{Wden}\) varied 2000-fold among streams, ranging from 89 m to 184 km (median of 9050 m), and there were no significant differences among regions or land-use categories (Fig. 3). In contrast, both region and land use contributed independently to the substantial variation in \(U\textsubscript{den}\) among streams, which was from 0.004 mg N m\(^{-2}\) h\(^{-1}\) to 9.2 mg N m\(^{-2}\) h\(^{-1}\), with a median of 0.58 mg N m\(^{-2}\) h\(^{-1}\) (Fig. 4). However, interaction between region and land use was not significant. Among regions, \(U\textsubscript{den}\) was highest in Massachusetts and Michigan and lowest in Southwest streams (Fig. 4A). \(U\textsubscript{den}\) also was about five times higher in suburban–urban streams than in reference streams (Fig. 4B).

Regional and land-use differences in \(U\textsubscript{den}\) likely are the result of differences in NO\textsubscript{3} concentration. ANOVA indicated that NO\textsubscript{3} concentration was significantly higher in Michigan streams (mean of 570 \(\mu\text{g N} \text{ L}^{-1}\)) and
Denitrification rates in streams

Table 1. Best AICc models (Δc < 4.0) predicting $S_{Wden}$. Sign of relationship is indicated for each variable in model. Variables that were available for model selection were: discharge, velocity, depth, stream gradient, water temperature, minimum daily dissolved oxygen concentration, NO$_3^-$ concentration, NH$_4^+$ concentration, soluble reactive phosphorus concentration, dissolved organic carbon concentration, gross primary production rate (GPP), ecosystem respiration rate (ER), total detritus, fine benthic organic matter (FBOM), As : A ratio, F$_{200}^{med}$, and fraction of the catchment in agricultural, suburban–urban, and agricultural + suburban–urban land uses. All variables were log-transformed with the exception of land-use fractions which were arcsine-square-root–transformed.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Model covariates</th>
<th>AICc</th>
<th>Δc</th>
<th>Model likelihood $w_1^*$</th>
<th>$R^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+Velocity, +Depth, +NO$_3^-$ concentration, −ER, −NH$<em>4^+$ concentration, −F$</em>{200}^{med}$</td>
<td>−62.98</td>
<td>0.00</td>
<td>1.00</td>
<td>0.32</td>
</tr>
<tr>
<td>2</td>
<td>+Velocity, +Depth, +NO$<em>3^-$ concentration, −ER, −F$</em>{200}^{med}$</td>
<td>−62.29</td>
<td>0.68</td>
<td>0.71</td>
<td>0.22</td>
</tr>
<tr>
<td>3</td>
<td>+Velocity, +Depth, +NO$_3^-$ concentration, −ER, −NH$<em>4^+$ concentration, −F$</em>{200}^{med}$, +Detritus</td>
<td>−61.29</td>
<td>1.68</td>
<td>0.43</td>
<td>0.14</td>
</tr>
<tr>
<td>4</td>
<td>+Velocity, +Depth, +NO$_3^-$ concentration, −ER, −NH$<em>4^+$ concentration, −F$</em>{200}^{med}$, +Detritus, −FBOM, +As : A, −Gradient</td>
<td>−60.74</td>
<td>2.24</td>
<td>0.33</td>
<td>0.10</td>
</tr>
<tr>
<td>5</td>
<td>+Velocity, +Depth, +NO$_3^-$ concentration, −ER, −NH$_4^+$ concentration</td>
<td>−60.48</td>
<td>2.50</td>
<td>0.29</td>
<td>0.09</td>
</tr>
<tr>
<td>6</td>
<td>+Velocity, +Depth, +NO$_3^-$ concentration, −ER</td>
<td>−60.42</td>
<td>2.55</td>
<td>0.28</td>
<td>0.09</td>
</tr>
<tr>
<td>7</td>
<td>+Velocity, +Depth, +NO$_3^-$ concentration, −ER, −NH$<em>4^+$ concentration, −F$</em>{200}^{med}$, +Detritus, −FBOM, +As : A, −Gradient, −GPP</td>
<td>−58.98</td>
<td>3.99</td>
<td>0.14</td>
<td>0.04</td>
</tr>
</tbody>
</table>

*$w_1^*$ = Akaike weight.

significantly lower in Southwest streams (mean of 10 µg N L$^{-1}$), and was significantly higher in suburban–urban (mean of 298 µg N L$^{-1}$) compared to reference streams (mean of 47 µg N L$^{-1}$), suggesting that increasing NO$_3^-$ concentrations stimulate $U_{den}$. We emphasize, however, that the effects of region shown here may not be indicative of regional differences in $U_{den}$ because our streams were not selected as a random sample of streams in each region, particularly the agricultural and suburban–urban streams.

The fraction of total NO$_3^-$ removal from water due to denitrification (denitrification fraction) ranged from 0.5% to 100% among streams, with a median of 15.8% (Fig. 5). Although denitrification fraction tended to be lower in the western streams (Kansas, Wyoming, Southwest, Oregon), differences among regions or land-use categories were not significant. Variation in denitrification fraction was related only to NH$_4^+$ concentration and ER (Fig. 6).

SEM identified relationships between potential controlling variables and $S_{Wden}$. Our hypothesized model of controls on denitrification was consistent with the data ($\chi^2 = 4.276$, df = 7, $p = 0.748$; Fig. 7A). In the simple model (Fig. 7A), which explained 64% of the variance in $S_{Wden}$, specific discharge ($Q/w$, which is equivalent to velocity $\times$ depth), NO$_3^-$ concentration, ER, and F$_{200}^{med}$ were significant direct controls, with increases in ER and F$_{200}^{med}$ shortening $S_{Wden}$ and increases in $Q/w$ and NO$_3^-$ increasing

---

**Fig. 2.** Examples of best fits of the denitrification model to tracer $^{15}$N$_2$ and $^{15}$N$_2$O flux data for two streams, a suburban–urban (Sub–urb) stream in Massachusetts (IS104) and an agricultural (Agr) stream in North Carolina (Jerry’s Branch).
$S_{Wden}$. $F_{200 \text{med}}$ is a measure of the fraction of median water travel time due to transient storage within the stream reach and, thus, is a good measure of transient storage zone importance (Runkel 2002). Because $S_{Wden}$ is the inverse of the fractional denitrification rate per unit stream length ($k_{den}$), these results indicate that $k_{den}$ is stimulated by increasing ER and $F_{200 \text{med}}$ but is reduced with increases in $Q/w$ and NO$_3^-$ concentration. Rate of GPP and NH$_4^+$ concentration were significant indirect controls on $S_{Wden}$ via their influence on ER (autotrophic respiration or production of labile carbon via GPP, or both) and on NO$_3^-$ concentration (nitrification), respectively. In addition to its direct effect, specific discharge ($Q/w$) indirectly affects $S_{Wden}$ via its negative effect on $F_{200 \text{med}}$. We found a small (low path coefficient) but significant covariance between $Q/w$ and ER which is unexplained.

The SEM path coefficients were derived using log$_{10}$-transformed data and, thus, can be interpreted as scaling coefficients representing power–law relationships between $S_{Wden}$ and different controlling factors (Fig. 7A). Comparison of path coefficients among the direct controls indicates that $S_{Wden}$ was most sensitive to $Q/w$ and least sensitive to $F_{200 \text{med}}$. Further, the path coefficient for $Q/w$ was $<1$, indicating that the effect of $Q/w$ on $S_{Wden}$ was not proportional and that denitrification rate increased with increasing specific discharge.

Including land use measured as the fraction of watershed area in agriculture plus suburban–urban land use in the SEM also produced a model for $S_{Wden}$ that was consistent with the data ($\chi^2 = 2.753$, df = 8, $p = 0.949$; Fig. 7B). We modeled land use as an indirect effect on $S_{Wden}$ with significant positive effects on several proximate (i.e., direct) controlling factors. The fraction of human land use in the catchment increases concentrations of NH$_4^+$ and NO$_3^-$. Because both NO$_3^-$ and NH$_4^+$ are increased by human land use and have opposite direct effects on $S_{Wden}$, the net indirect effect of land use on $S_{Wden}$ is somewhat reduced. It is interesting that land use has a direct effect on GPP, but no direct effect on ER, the metabolism variable that does directly affect on $S_{Wden}$. It is also interesting that the significant linkage between NH$_4^+$ and NO$_3^-$ concentrations in the simple model (Fig. 7A) disappears when land use is included (Fig. 7B), suggesting that the relationship between NH$_4^+$ and NO$_3^-$ concentrations may be the result of covariance (i.e., both ions increase with land use) rather than a causal mechanism (nitrification).

Seven MLR models for $S_{Wden}$ selected according to AIC$_c$ criteria, had sufficient evidence ($\Delta$AIC$_c$ values $<4.0$; Keeton et al. 2007) to be considered strong predictive models (Table 1). All of these models included water velocity, depth, NO$_3^-$ concentration, and ER, indicating likely strong effects of these variables on $S_{Wden}$. In addition, NH$_4^+$ concentration and $F_{200 \text{med}}$ were included in five of the seven models, also indicating effects on $S_{Wden}$. Several other stream characteristics were included in only one or two models, including total detritus and total fine benthic organic matter in the streambed, stream gradient, As: A ratio (a measure of the relative size of transient storage zones relative to the surface-water zone), and GPP. Therefore, we consider evidence for the importance of these variables weak. Land-use fraction was not included in any of the best predictive models, indicating that all land-use effects were captured in the other variables in these models. $R^2$ values for these models (ranging from 0.56 to 0.7) are similar to the $R^2$ of 0.64 for the path model (Fig. 7), suggesting that the latter includes the primary controls on $S_{Wden}$.

The relationship between $U_{den}$ and NO$_3^-$ concentration (Fig. 8A) was strong, in part because NO$_3^-$ concentration was used in the computation of $U_{den}$ from the measured parameters $k_{den}$ and NO$_3^-$ concentration (Eqs. 5 and 6). However, the best-fit power–law relationship ($\log \ U_{den} = -2.0 + 0.51 \log \ \text{NO}_3^-; \ R^2 = 0.37$) indicated a slope of 0.51 (95% CI of 0.32 to 0.70), significantly lower than the expected value of 1.0 based solely on the computation. This indicates a noncommensurate
Denitrification rates in streams

increase in $U_{\text{den}}$ with increasing NO$_3^-$ concentration (i.e., a saturating type of relationship). The best fit Michaelis–Menten relationship explained 26% of the variation in $U_{\text{den}}$, with a maximum $U_{\text{den}}$ of 3.9 mg N m$^{-2}$ h$^{-1}$ and half-saturation NO$_3^-$ concentration of 422 µg N L$^{-1}$. However, the Michaelis–Menten function did not fit the data as well as the power–law function (Fig. 8A). A few other reach-scale measurements of areal denitrification rate that have been reported in the literature are generally consistent with our $U_{\text{den}} - \text{NO}_3^-$ concentration relationship (Fig. 8A). ER also was a significant predictor of $U_{\text{den}}$ (Fig. 8B); however, it explained only 13% of the variation in $U_{\text{den}}$.

Discussion

Denitrification is one of the most challenging N-cycling processes to quantify, and yet it is thought to represent a substantial loss pathway for the massive increases in N deposited to terrestrial and aquatic ecosystems. Here, we show, using direct measurement of denitrification with a $^{15}$NO$_3^-$ tracer, that denitrification can account for a substantial fraction of the NO$_3^-$ removal from streamwater in small streams of unaltered as well as agricultural and suburban–urban land uses. However, the large variation in denitrification rates and contribution to total NO$_3^-$
Across all regions and land uses, denitrification rates we re-
s that exchanges with streamwater NO\textsubscript{3}\textsuperscript{−} over a 1-km reach of stream. By comparison, total uptake removed ~64% of streamwater NO\textsubscript{3}\textsuperscript{−} over a 1-km reach in these streams (based on our measurements of \(k_{\text{den}}\)).

Using results from an earlier tracer \(^{15}\text{N}\) study of \(N\) uptake in mostly pristine streams, Peterson et al. (2001) also reported that ~64% of the inorganic \(N\) inputs to streams could be removed over a 1-km stream reach by in-stream processes, although the importance of denitrification was not measured. Peterson et al. (2001) further showed that in-stream inorganic \(N\) removal was most sensitive to variations in NO\textsubscript{3}\textsuperscript{−} removal relative to other \(N\)-cycling processes. Our results demonstrate that denitrification is an important mechanism for retention and removal of NO\textsubscript{3}\textsuperscript{−} in streams across biomes and land uses, even though coupled denitrification is not accounted for with our method (see discussion below).

In a recent compilation of denitrification rates in aquatic ecosystems, Piña-Ochoa and Álvarez-Cobelas (2006) show that denitrification rates are considerably higher in rivers than in lakes, estuaries, and the ocean (Fig. 4B). Our denitrification rates are somewhat lower than those reported for rivers by Piña-Ochoa and Álvarez-Cobelas. Median \(U_{\text{den}}\) value for suburban–urban streams (1.5 mg N m\textsuperscript{−2} h\textsuperscript{−1}) is ~3.5 times lower than the median value for rivers reported by Piña-Ochoa and Álvarez-Cobelas, and the difference is even greater for agricultural and reference streams in our study. Some of the discrepancy may be due to differences in methods and spatial scale. Of the 24 denitrification rates reported by Piña-Ochoa and Álvarez-Cobelas for rivers, 13 were from studies using the acetylene inhibition technique and only four were reach-scale measurements using either \(^{15}\text{N}\) or \(N_2\) concentration methods, three of which were for systems with high NO\textsubscript{3}\textsuperscript{−} concentration (>1 mg N L\textsuperscript{−1}).

Few published reach-scale stream denitrification rates are available. Two studies used tracer \(^{15}\text{N}\) additions (Böhlike et al. 2004; Mulholland et al. 2004) and two used changes in \(N_2\) concentration to quantify stream reach-scale denitrification rates (Laursen and Seitzinger 2002; McCutchan et al. 2003). The latter studies were of streams that were considerably larger (discharges of 1.6–19 m\textsuperscript{3} s\textsuperscript{−1}) than those in our study (<0.001–0.19 m\textsuperscript{3} s\textsuperscript{−1}). The fact that these other reach-scale studies plot reasonably close to our \(U_{\text{den}}\)-NO\textsubscript{3}\textsuperscript{−} relationship (Fig. 8A) suggests that our results are relatively robust, although more reach-scale measurements are needed, particularly in larger streams.

**Comparison with other measurements of denitrification rate**—Across all regions and land uses, denitrification accounted for a median of ~16% of the total NO\textsubscript{3}\textsuperscript{−} removal from stream water measured, with the remainder being assimilated by stream biota (Hall et al. 2009). This denitrification fraction is similar to that determined in an earlier tracer \(^{15}\text{N}\) study in a small stream in the Southern Appalachian region of the U.S. with a low NO\textsubscript{3}\textsuperscript{−} concentration (Mulholland et al. 2004), but is lower than the denitrification fraction of >0.5 estimated for a NO\textsubscript{3}\textsuperscript{−}-rich agricultural stream in the U.S. Midwest using a similar tracer \(^{15}\text{N}\) approach (Böhlike et al. 2004). Although highly variable among our streams, the denitrification fraction was substantial for many streams, accounting for 40% or more of total NO\textsubscript{3}\textsuperscript{−} removal from water in one-third of the streams. Because this is the first study to quantify this measure across a range of streams, we lack a basis for further comparison.

Based on our measurements of \(k_{\text{den}}\), denitrification resulted in removal of 10% (median value, lower and upper quartile values of 4% and 22%, respectively) of streamwater NO\textsubscript{3}\textsuperscript{−} over a 1-km reach of stream. By comparison, total uptake removed ~64% of streamwater NO\textsubscript{3}\textsuperscript{−} over a 1-km reach in these streams (based on our measurements of \(k_{\text{den}}\)).

**Measurement limitations**—Denitrification rates we report here are likely underestimates of total denitrification in these streams because they include only denitrification of the extant pool of streamwater NO\textsubscript{3}\textsuperscript{−}. Supply of NO\textsubscript{3}\textsuperscript{−} for denitrification may also derive from the NO\textsubscript{3}\textsuperscript{−} produced by nitrifiers in coupled mineralization–nitrification as has been shown for marine sediments (Laursen and Seitzinger 2001). Our measurements do not include this “coupled denitrification” if it is confined entirely to sediments and does not result in NO\textsubscript{3}\textsuperscript{−} that exchanges with streamwater NO\textsubscript{3}\textsuperscript{−} pools. Coupled denitrification may be the ultimate fate of a
Fig. 7. Structural equation models describing controls of NO$_3^-$ uptake length due to denitrification ($S_{Wden}$). Panel A presents the simple model ($\chi^2 = 4.276$, df $= 7$, $p = 0.748$), and panel B describes a more complex model that includes catchment land-use fraction ($\chi^2 = 2.753$, df $= 8$, $p = 0.949$). The catchment land-use fraction is the fraction of the catchment comprised by agriculture + suburban–urban land uses. Boxes are variables in the model and all variables were log-transformed except catchment land-use fraction, which was arcsine-square-root–transformed. Single-headed solid arrows are paths that are significantly different than 0 ($p < 0.05$) and dotted arrows are hypothesized paths that were found to be not significant. Double-headed arrows are unhypothesized covariances. Numbers are unstandardized path coefficients and can be interpreted as power–law coefficients, except for the italicized path coefficients leading from land use (panel B) because land use was arcsine-square-root–transformed. Error variance was calculated for all variables, and is shown for $S_{Wden}$ (solid arrow not originating at a variable). Models in both panels A and B explained 64% of the variation in Log $S_{Wden}$.
During periods of relatively low and stable flow in most streams. Thus, our measurements may not reflect mean annual denitrification rates in these streams. Our objective was to evaluate controls on denitrification across a broad variety of streams and conditions and not to assess variation in denitrification rates over time. A recent modeling study of denitrification in two river basins clearly showed the importance of seasonal variation in streamflow, with considerably lower removal of NO$_3^-$ by denitrification during the higher flow spring period compared with lower flows in summer (Alexander et al. in press).

**Controls on denitrification rate**—Our results provide important new information on the physical, chemical, and biological factors that affect denitrification across a broad array of streams. Two statistical approaches (SEM and MLR) provided consistent evidence that a combination of hydrological ($Q/\nu$, equivalent to velocity $\times$ depth), chemical (NO$_3^-$ and NH$_4^+$ concentrations), and biological (ER) factors were the most important controls of stream denitrification as quantified by $S_{\text{Wden}}$. In addition, both SEM and MLR indicated that transient storage zones (as quantified by $E_{\text{med}}$) influenced $S_{\text{Wden}}$ although not as strongly as other factors. Together these factors explain approximately two-thirds of the variation in $S_{\text{Wden}}$.

Influence of the hydrological variables on $S_{\text{Wden}}$ is expected because transport velocity and contact between water and the streambed where most biological activity occurs (inversely proportional to depth) are known to control uptake length of nutrients in streams (Newbold et al. 1981; Stream Solute Workshop 1990). However, the SEM coefficient for the $Q/\nu$--$S_{\text{Wden}}$ path was 0.74, suggesting that $S_{\text{Wden}}$ does not increase proportionately with an increase in specific discharge (a proportionate increase would result in a path coefficient of 1.0). This result was also observed for total uptake length of NO$_3^-$ (Hall et al. 2009), and suggests that NO$_3^-$ removal efficiency ($U_{\text{den}}$, see discussion below) increases as stream size increases.

**Effects of NO$_3^-$ concentration and respiration**—Analysis of $S_{\text{Wden}}$ using SEM and MLR indicated that several factors other than hydrological properties also controlled denitrification across stream. NO$_3^-$ concentration and ER exhibited the strongest effects, based on SEM path coefficients (Fig. 7) and inclusion of both of these variables in all MLR models (Table 1). Increasing NO$_3^-$ concentration increased $S_{\text{Wden}}$ indicating a reduction in the effectiveness of denitrification to remove NO$_3^-$ from water as it flowed downstream, whereas increasing ER reduced $S_{\text{Wden}}$ indicating denitrification was more effective as a NO$_3^-$ sink in streams with higher respiration rates. Analysis of denitrification expressed as an areal rate ($U_{\text{den}}$) also showed strong effects of NO$_3^-$ concentration and ER based on univariate relationships.

Stronger evidence for the effect of NO$_3^-$ concentration on denitrification is provided by relationships with denitrification uptake velocity ($U_{\text{den}}$), a measure of the biological efficiency of denitrification relative to NO$_3^-$ availability in stream water and one not computationally

---

**Fig. 8.** Plot of $U_{\text{den}}$ and (A) NO$_3^-$ concentration and (B) ER. The numbered black data points in panel A are reach-scale denitrification rates determined using a similar $^{15}$NO$_3^-$ tracer approach (1 = East Fork Walker Branch, Mulholland et al. 2004; 2 = Sugar Creek, Illinois, Böhlike et al. 2004) or using a N$_2$ flux approach (3 = South Platte River, Colorado, McCutchan et al. 2003; 4 = Iroquois River, Illinois and Millstone River, New Jersey, Laursen and Seitzinger 2002). The NO$_3^-$ concentrations for the Iroquois and Millstone Rivers were given only as >4200 $\mu$g N L$^{-1}$ and the plotting uncertainty is indicated with the arrow. The solid line in panel A indicates a slope of 1:1, which is the expected slope based on the computation of $U_{\text{den}}$ from measurements of $k_{\text{den}}$ and NO$_3^-$ concentration (Eqs. 5 and 6). The straight dashed line in panel A represents the power–law relationship ($\log U_{\text{den}} = -2.0 + 0.51 \log \text{NO}_3^-$; $r^2 = 0.37$). The curved dashed line represents the best fit Michaelis–Menten relationship ($V_{\text{max}} = 3.9$ mg N m$^{-2}$ h$^{-1}$, $K_m = 422$ $\mu$g N L$^{-1}$, $r^2 = 0.26$). The solid line in panel B represents the power–law relationship ($\log U_{\text{den}} = -1.35 + 0.73 \log \text{ER}$; $r^2 = 0.13$).
influenced by NO$_3^-$ concentration (Eq. 5). In a previous report of results from this study, we showed that $v_{den}$ was strongly related both to NO$_3^-$ concentration and ER (Mulholland et al. 2008). The $v_{den}$–NO$_3^-$ relationship was a negative power–law function (slope of $-0.49$), indicating that higher NO$_3^-$ concentration resulted in lower denitrification efficiency (lower $v_{den}$). There was no effect of land-use category on the $v_{den}$–NO$_3^-$ relationship (interactive effect of land use and NO$_3^-$ concentration was not significant; $p = 0.289$, SAS Proc GLM), indicating the primary effect of land use on $v_{den}$ was via effects on NO$_3^-$ concentration. However, despite the loss of denitrification efficiency, areal denitrification rates increased with increasing NO$_3^-$ concentration (Fig. 8A).

The significant effect of NH$_4^+$ concentration on both denitrification fraction (Fig. 6A) and $S_{Wden}$ (Fig. 7) may be more evidence of the effect of NO$_3^-$ availability on denitrification. When NH$_4^+$ concentrations are high, there may be a reduction in assimilatory demand for NO$_3^-$ because NH$_4^+$ satisfies a greater proportion of the demand for inorganic fixed N for biosynthesis. As NH$_4^+$ becomes more available, denitrifiers may have increased access to NO$_3^-$, increasing the denitrification fraction as well as denitrification rate.

The strong, positive effect of ER on all measures of denitrification, including denitrification fraction (Fig. 6), may reflect wider distribution of zones of anoxia or hypoxia within the streambed of stream ecosystems because aerobic respiration decreases oxygen concentration. Although denitrification is an anaerobic process, it requires a supply of NO$_3^-$ which can be supplied via nitrification, an aerobic process, and thus spatial heterogeneity in aerobic and anaerobic environments is important for high rates of denitrification. Such spatial heterogeneity may be enhanced in streambeds with high rates of aerobic respiration, thus enhancing denitrification. Further, denitrification is a facultative process and high rates of respiration suggest the presence of large populations of bacteria, which can potentially denitrify when conditions become favorable. ER may also be a surrogate measure for the availability of labile organic carbon required for denitrification, in the sense that both aerobic respiration (ER) and anaerobic respiration (i.e., denitrification) are controlled by available carbon substrates for decomposition. We did not find statistically significant relationships between denitrification rate parameters and several measures of organic matter abundance (dissolved organic carbon concentration, standing stocks of total detritus and fine benthic organic matter in the streambed); however, these latter measures may not adequately quantify labile organic carbon availability.

**Comparison with other studies of denitrification controls**—Our results showing the importance of NO$_3^-$ concentration and ER as controls on denitrification are consistent with previous research, most of which was conducted in field chambers or in the laboratory. Many studies in streams and other aquatic ecosystems show that denitrification rates are controlled by NO$_3^-$ concentration (Garcia-Ruiz et al. 1998; Kana et al. 1998; Royer et al. 2004), by organic carbon availability (Caffrey et al. 1993; Holmes et al. 1996; Arango and Tank 2008), and by dissolved oxygen concentrations in the overlying water and in the upper layer of sediments (Christensen et al. 1990; Rysgaard et al. 1994). In addition, diurnal variations in denitrification can be related to photosynthetic oxygen production that reduces denitrification rates during the day (Christensen et al. 1990; Risgaard-Petersen et al. 1994). In contrast, Laursen and Seitzinger (2004) found higher denitrification rates during the day, which they attribute to elevated NO$_3^-$ concentrations resulting from higher daytime nitrification rates under greater oxygen concentrations. Here, we found no consistent differences in denitrification rate between day and night.

In their meta-analysis of denitrification rates across aquatic ecosystems, Piña-Ochoa and Álvarez-Cobelas (2006) found significantly higher rates of denitrification ($U_{den}$) in ecosystems with high NO$_3^-$ concentration (>700 μg N L$^{-1}$), high sediment interstitial dissolved organic carbon concentration (>10 mg g$^{-1}$), low dissolved oxygen concentration (<0.5 mg L$^{-1}$) and low total phosphorus concentration (<30 μg P L$^{-1}$). Multiple regression analysis, however, indicated that only NO$_3^-$ and dissolved oxygen concentrations were significant predictors of denitrification rate, with NO$_3^-$ concentration alone explaining 70% of the variability in denitrification rate (Piña-Ochoa and Álvarez-Cobelas 2006). Although we also found NO$_3^-$ concentration to be the strongest single predictor for all denitrification metrics, stream dissolved oxygen concentration (either average or daily minimum values) did not relate to any denitrification measure with the exception of a positive relationship between minimum dissolved oxygen concentration and $S_{Wden}$. However, minimum dissolved oxygen concentration did not enter any of the MLR models (Table 1) and, therefore, the bivariate relationship may be spurious.

**Denitrification–NO$_3^-$ concentration relationship**—Although many studies (including ours) have shown that areal denitrification rate ($U_{den}$) increases with increasing NO$_3^-$ concentration, our study is the first to clearly demonstrate that the efficiency of denitrification declines with increasing NO$_3^-$ concentration across multiple biomes. We measured denitrification efficiency (i.e., the fraction of NO$_3^-$ available in water that is removed by denitrification) relative to both spatial ($S_{Wden}$) and temporal scales ($v_{den}$). Here we show that the spatial efficiency of denitrification declined ($S_{Wden}$ increases) with increasing NO$_3^-$ concentration (Fig. 7). As noted above, Mulholland et al. (2008) showed that the temporal efficiency of denitrification ($v_{den}$) also declined with increasing NO$_3^-$ concentration. Further, Mulholland et al. (2008) showed that the decline in denitrification efficiency with increasing NO$_3^-$ concentration can have important implications for NO$_3^-$ removal in stream networks and its response to anthropogenic NO$_3^-$ loading to streams, with larger streams becoming more important in NO$_3^-$ removal within the network as loading rates increase and smaller streams become saturated with nitrogen.

Saturation of N cycling rates is an important issue that has been well-studied in terrestrial systems, but poorly understood in streams (Bernot and Dodds 2005). Prior
research has suggested three potential models for areal denitrification rates ($U_{den}$): (1) no saturation (first-order model), (2) a Michaelis–Menten type saturation (Seitzinger 1988), and (3) an efficiency loss model described by a power–law function with an exponent of <1.0 (O’Brien et al. 2007). Our results suggest that the efficiency loss model is more appropriate when considering denitrification rates across a wide variety of streams (Fig. 8A). Although a Michaelis–Menten model may be appropriate for describing the denitrification–NO$_3^-$ concentration relationship in a particular stream under a particular set of biological conditions (e.g., constant microbial population), our data suggest that this form of saturation kinetics is not the best model for denitrification rates across streams. A power–law function appears to be the better model probably because denitrification involves multiple mechanisms and controls across the wide range of stream conditions and NO$_3^-$ concentrations reflected in this study.

Effects of transient storage zones—Our results are consistent with other studies indicating that transient storage zones (including hyporheic zones) are important sites for denitrification in streams (Duff and Triska 1990; Triska et al. 1993). Denitrification rates were greater ($S_{W_{den}}$) in streams with longer water residence time in transient storage zones, as indicated by higher $F_{med}$. However, $F_{med}$ did not appear to exert as strong an effect on $S_{W_{den}}$ as other controls, because the absolute value of its path coefficient in SEM was considerably lower than those for the other significant direct controls of $S_{W_{den}}$ (Fig. 7) and it was not included in all MLR models (Table 1). Our measurements of transient storage zones are both hyporheic (within benthic sediments) and in-channel backwater zones, and the latter may not be a primary site of denitrification in streams. The effect of transient storage zones on denitrification may require further study distinguishing these two types of storage zones and flow paths. In their recent review, Seitzinger et al. (2006) have suggested that denitrification is controlled by the interactions between geomorphology and hydrology that establish flow paths and water residence times. This is likely to be particularly true for streams.

Effects of land use—Our experimental design allowed us to assess the effects of land use across multiple biomes. Land-use category had no direct effect on $S_{W_{den}}$ and denitrification fraction (Figs. 3 and 5), and catchment land-use fraction was not significantly related to these parameters and did not enter as a significant predictor in the MLR models for $S_{W_{den}}$. Instead, the effect of land use on denitrification was indirect, primarily via effects on NH$_4^+$ and NO$_3^-$ concentrations. Increasing proportion of agriculture and suburban–urban land use within the catchment resulted in higher concentrations of NO$_3^-$ and NH$_4^+$, as well as higher rates of GPP (Fig. 7B). Increases in NH$_4^+$ concentrations led to increases in the spatial efficiency of denitrification (shorter $S_{W_{den}}$, Fig. 7B) and greater denitrification fraction (Fig. 6A), whereas increases in NO$_3^-$ concentration resulted in increases in areal denitrification rates (Fig. 8A), but decreases in the spatial efficiency of denitrification ($S_{W_{den}}$; Fig. 7B). Increases in GPP had little effect on denitrification, although increases in GPP had a large positive effect on total uptake rates of NO$_3^-$ (Hall et al. 2009). Although the effect of land use was indirect, it was nonetheless important given the strength of its effect on NO$_3^-$ and NH$_4^+$ concentrations, as indicated by the high coefficients for these paths in Fig. 7B.

Here we show that NO$_3^-$ concentration is the key to understanding and predicting denitrification rates in streams. Although areal rates of denitrification ($U_{den}$) increase with increasing NO$_3^-$ concentration, the efficiency of NO$_3^-$ removal from water via denitrification declines, resulting in a smaller proportion of streamwater NO$_3^-$ load being removed as water flows over a given length of stream ($k_{den}$ or 1/$S_{W_{den}}$). Our results suggest that regional differences in denitrification are small relative to the proximate factors of NO$_3^-$ concentration and ecosystem respiration rate. Land use is an important but indirect control on denitrification in streams, primarily via its effect on NO$_3^-$ concentration. This result is important because it indicates that land use per se may not be critical, but rather the NO$_3^-$ loading to streams from land uses that increase that loading is the important factor.

The permanent removal of nitrogen via denitrification is an ecosystem service provided by streams. If a stream management objective is to achieve high efficiency of NO$_3^-$ removal via denitrification to ensure the health of downstream ecosystems, lower NO$_3^-$ loadings that maintain concentrations at <1 mg N L$^{-1}$ are required. Many streams in agricultural and suburban–urban settings exceed these values and, therefore, already contribute to downstream ecosystem degradation. Improvement in N removal efficiency in these streams will require reduction in NO$_3^-$ loading. Our results clearly show that reduction in NO$_3^-$ loading as well as maintaining biological integrity and the capacity to retain organic matter that fuels respiration are crucial ingredients for efficient removal of NO$_3^-$ via denitrification in streams. Future studies should address the issues of seasonal or longer term variations in denitrification rate or its response to high flows that we were unable to address in this study.

Acknowledgments

This work was supported by National Science Foundation (NSF) grant DEB-0111410 to the University of Tennessee, NSF Long Term Ecological Research (LTER) grants to some of the individual sites, and numerous smaller grants and fellowships to other institutions. More than 100 students and scientists gathered the information for this synthesis paper. We thank Nathaniel Ostrom for assistance with stable isotope measurements of N$_2$ and N$_2$O and Wil Wolflheim for initial development of the model that we modified to estimate denitrification rates from field data. We thank Charles Garten and two anonymous reviewers for comments that improved earlier versions of the manuscript. We also thank the NSF LTER network, U.S. Forest Service, National Park Service and many private landowners for permission to conduct experiments on their lands. Partial support to PJM during manuscript preparation was provided by the U.S. Department of Energy, Office of Science, Biological and Environmental Research under contract DE-AC05-00OR22725 with UT-Battelle LLC.
References


Associate editor: Samantha B. Joye

Received: 15 April 2008
Accepted: 29 September 2008
Amended: 02 November 2008